W^X policy violation affecting all Windows drivers compiled in Visual Studio 2013 and previous

Back in June, I was doing some analysis on a Windows driver and discovered that the INIT section had the read, write, and executable characteristics flags set. Windows executables (drivers included) use these flags to tell the kernel what memory protection flags should be applied to that section’s pages once the contents are mapped into memory. With these flags set, the memory pages become both writable and executable, which violates the W^X policy, a concept which is considered good security practice. This is usually considered a security issue because it can give an attacker a place to write arbitrary code when staging an exploit, similar to how pre-NX exploits used to use the stack as a place to execute shellcode.

While investigating these section flags in the driver, I also noticed a slightly unusual flag was set: the DISCARDABLE flag. Marking a section as discardable in user-mode does nothing; the flag is meaningless. In kernel-mode, however, the flag causes the section’s pages to be unloaded after initialisation completes. There’s not a lot of documentation around this behaviour, but the best resource I discovered was an article on Raymond Chen’s “The Old New Thing” blog, which links off to some other pages that describe the usage and behaviour in various detail. I’d like to thank Hans Passant for giving me some pointers here, too. The short version of the story is that the INIT section contains the DriverEntry code (think of this like the ‘main()’ function of a driver), and it is marked as discardable because it isn’t used after the DriverEntry function returns. From gathering together scraps of information on this behaviour, it seems to be that the compiler does this because the memory that backs the DriverEntry function must be pageable (though I’m not sure why), but any driver code which may run at IRQLs higher than DISPATCH_LEVEL must not try to access any memory pages that are pageable, because there’s no guarantee that the OS can service the memory access operation. This is further evidenced by the fact that the CODE section of drivers is always flagged with the NOT_PAGED characteristic, whereas INIT is not. By discarding the INIT section, there can be no attempt to execute this pageable memory outside of the initialisation phase. My understanding of this is incomplete, so if anyone has any input on this, please let me know.

The DISCARDABLE behaviour means that the window of exploitation for targeting the memory pages in the INIT section is much smaller – a vulnerability must be triggered during the initialisation phase of a driver (before the section is discarded), and that driver’s INIT section location must be known. This certainly isn’t a vulnerability on its own (you need at least a write-what-where bug to leverage this) but it is also certainly bad practice.

Here’s where things get fun: in order to compare the driver I was analysing to a “known good” sample, I looked into some other drivers I had on my system. Every single driver I investigated, including ones that are core parts of the operating system (e.g. win32k.sys), had the same protection flags. At this point I was a little stumped – perhaps I got something wrong, and the writable flag is needed for some reason? In order to check this, I manually cleared the writable flag on a test driver, and loaded it. It worked just fine, as did several other test samples, from which I can surmise that it is superfluous. I also deduced that this must be a compiler (or linker) issue, since both Microsoft drivers and 3rd party drivers had the same issue. I tried drivers compiled with VS2005, VS2010, and VS2013, and all seemed to be affected, meaning that pretty much every driver on Windows Vista to Windows 8.1 is guaranteed to suffer from this behaviour, and Windows XP drivers probably do too.

INIT section of ATAPI Driver from Windows 8.1

While the target distribution appears to be pretty high, the only practical exploitation path I can think of is as follows:

  1. Application in unprivileged usermode can trigger a driver to be loaded on demand.
  2. Driver leaks a pointer (e.g. via debug output) during initialisation which can be used to determine the address of DriverEntry in memory.
  3. A write-what-where bug in another driver or in the kernel that is otherwise very difficult to exploit (e.g. due to KASLR, DEP, KPP, etc.) is triggered before the DriverEntry completes.
  4. Bug is used to overwrite the end of the DriverEntry function.
  5. Arbitrary code is executed in kernel.

This is a pretty tall order, but there are some things that make it more likely for some of the conditions to arise. First, since any driver can be used (they all have INIT marked as RWX) you only need to find one that you can trigger from unprivileged usermode. Ordinarily the race condition between step 1 and step 4 would be difficult to hit, but if the DriverEntry calls any kind of synchronisation routine (e.g. ZwWaitForSingleObject) then things get a lot easier, especially if the target sync object happens to have a poor or missing DACL, allowing for manipulation from unprivileged usermode code. These things make it a little easier, but it’s still not very likely.

Since I was utterly stumped at this point as to why drivers were being compiled in this way, I decided to contact Microsoft’s security team. Things were all quiet on that front for a long time; aside from an acknowledgement, I actually only heard back from yesterday (2015/09/03). To be fair to them, though, it was a complicated issue and even I wasn’t very sure as to its impact, and I forgot all about it until their response email.

Their answer was as follows:

After discussing this issue internally, we have decided that no action will be taken at this time. I am unable to allocate more resources to answer your questions more specifically, but we do thank you for your concern and your commitment to computer security.

And I can’t blame them. Exploiting this issue would need a powerful attack vector already, and even then it’d be pretty rare to find the prerequisite conditions. The only thing I’m a bit bummed about is that they couldn’t get anyone to explain how it all works in full.

But the story doesn’t end there! In preparation for writing this blog post, I opened up a couple of Microsoft’s drivers on my Windows 10 box to refresh my memory, and found that they no longer had the execute flag set on the INIT section. It seems that Microsoft probably patched this issue in Visual Studio 2015, or in a hotfix for previous versions, so that it no longer happens. Makes me feel all warm and fuzzy inside. I should note, however, that 3rd party drivers such as Nvidia’s audio and video drivers still have the same issue, which implies that they haven’t been recompiled with a version of Visual Studio that contains the fix. I suspect that many vendor drivers will continue to have this issue.

I asked Microsoft whether it had been fixed in VS2015, but they wouldn’t comment on the matter. Since I don’t have a copy of VS2015 yet, I can’t verify my suspicion that they fixed it.

In closing, I’d like to invite anyone who knows more than me about this to provide more information about how/why the INIT section is used and discarded. If you’ve got a copy of VS2015 and can build a quick Hello World driver to test it out, I’d love to see whether it has the RWX issue on INIT.


Disclosure timeline:

  • 29th June 2015 – Discovered Initial driver bug
  • 30th June 2015 – Discovered wider impact (all drivers affected)
  • 2nd July 2015 – Contacted Microsoft with report / query
  • 2nd July 2015 – Microsoft replied with acknowledgement
  • 6th July 2015 – Follow-up email sent to Microsoft
  • [ mostly forgot about this, so I didn’t chase it up ]
  • 3rd September 2015 – Microsoft respond (see above)
  • 3rd September 2015 – Acknowledgement email sent to Microsoft, querying fix status
  • 4th September 2015 – Microsoft respond, will not comment on fix status
  • 4th September 2015 – Disclosed

Pentesting Java EE web applications with LAPSE+

Just a quick tip for anyone doing a code review of a Java EE web application: LAPSE+ is a very useful tool to have in the arsenal, whether you’ve got the original source or just the JAR/WAR file.

In my case, the client provided me with a single .WAR file which contained the application. As it was a large application, I didn’t really fancy digging through everything manually with JD-GUI, although it is an excellent Java decompiler. I decided to take the opportunity to give LAPSE+ a try.

Here’s what  you’ll need:

You can also grab a PDF instruction manual for LAPSE from the same site. However, be aware that I found some of the information in there to be a bit misleading, e.g. needing a specific version of Eclipse. Also, don’t worry if your client provided you a project for a different IDE, such as IntelliJ IDEA – it doesn’t really matter.

First step is to get Eclipse set up. Drop the .jar file from the LAPSE+ archive into the plugins directory of Eclipse. (Re)start Eclipse, then go to Window -> View -> Other… and select the items relating to LAPSE+. A little toolbar should appear on the right with blue spherical buttons. These are your LAPSE+ windows.

Next step is to load your code into a project. This is split up into two parts, but if you’ve already got an Eclipse project for the site’s source code, you can skip the first part. Otherwise, you’ll need to extract the code from your archive and make a project for it. Start by loading the JAR (rename the .WAR to .JAR if needs be) into JD-GUI. It should decompile the archive and let you browse the code. Go to File -> Export all Sources, and save the resulting ZIP file somewhere. This archive now contains all your decompiled source code, split into directories based on the namespace hierarchy.

Now, go back to Eclipse and create an empty Java project, filling the wizard out with whatever values suit you. Once that’s created, go into the project explorer tree and find the src directory, then right click it and select Import. Select your newly exported ZIP file, and Eclipse will populate your project with your reverse-engineered source. Now right-click the project and select Build. In all likelihood, it’ll throw a whole load of errors due to imperfect decompilation – don’t worry, we don’t really care, because LAPSE+ can still function with a broken build.

Once you’ve got your project set up, go to the individual LAPSE+ windows and browse through what they found. You might need to manually refresh them to run through the checking process. In my case, I found about a 10:1 ratio of false positives, which isn’t actually too bad for code scanning. Within an hour or so of digging through the results I’d found a couple of concrete XSS bugs that I’d not spotted yet, plus a whole bunch of potential XSS bugs that I couldn’t immediately find vectors for, and a whole variety of other interesting stuff to dig through. It’s a really nice way to cut down a 400kLoC project into manageable target points.

Password cracking with VMware Authentication Daemon

I just came across a cool trick you can try which allows you to crack passwords on a remote system that is running the VMware Authentication Daemon. This service installs and runs by default on Windows host machines that have VMware Virtual Workstation installed, and listens on TCP port 912. It shows up on nmap as apex-mesh, but doesn’t follow the APEX protocol at all. Instead, it looks a little bit like a hybrid between an FTP and SMTP server:

220 VMware Authentication Daemon Version 1.0, ServerDaemonProtocol:SOAP, MKSDisplayProtocol:VNC ,
?
530 Please login with USER and PASS.
USER test
331 Password required for test.
PASS test
530 Login incorrect.
USER Graham
331 Password required for Graham.
PASS <snip>
230 User Graham logged in.
?
500 Unknown command '?'
HELP
500 Unknown command 'HELP'
INFO
500 Unknown command 'INFO'
STAT
500 Unknown command 'STAT'
CD C:\
500 Unknown command 'CD C:\'
HELO
500 Unknown command 'HELO'
HELLO
500 Unknown command 'HELLO'
EXIT
500 Unknown command 'EXIT'
QUIT
221 Goodbye

As you can see, I couldn’t find any working commands. The interesting part is that it accepted my real NT username and password for the machine that the service was running on. Even more interesting, it doesn’t seem to have any rate-limiting or obvious “failed attempt” logs, so it’s much more stealthy than attacking RDP or SMB directly. In fact, this may translate over to Linux user accounts, too.

It turns out that someone already created a metasploit module for exactly this purpose, so go nuts!